Pages

Sabtu, 22 Juni 2013

identifikasi Lithium



LITIUM
Battery-lithium-cr2032.jpg
L
Litium adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Li dan nomor atom 3. Unsur ini termasuk dalam logam alkali dengan warna putih perak. Dalam keadaan standar, litium adalah logam paling ringan sekaligus unsur dengan densitas (massa jenis) paling kecil. Seperti logam-logam alkali lainnya, litium sangat reaktif dan terkorosi dengan cepat dan menjadi hitam di udara yang lembap. Oleh karena itu, logam litium biasanya disimpan dalam wadah yang diisi minyak anhidrat.
Menurut teorinya, litium adalah salah satu dari sedikit unsur yang disintesis dalam kejadian Dentuman Besar walaupun kelimpahannya sudah jauh berkurang. Sebab-sebab menghilangnya litium dan proses pembentukan litium yang baru menjadi topik penting dalam astronomi. Litium adalah unsur ke-33 paling melimpah di bumi. Namun oleh karena reaktivitasnya yang sangat tinggi membuat unsur ini hanya bisa ditemukan di alam dalam keadaan bersenyawa dengan unsur lain. Litium ditemukan di beberapa mineral pegmatit, namun juga bisa didapatkan dari air asin dan lempung. Pada skala komersial, logam litium didapatkan dengan elektrolisis dari campuran litium klorida dan kalium klorida.
Litium memiliki satu elektron valensi yang mudah menjadi sebuah kation. Oleh karena itu litium mempunyai kemampuan mengalirkan listrik dan panas dengan baik serta sebagai unsur yang sangat reaktif, walaupun logam alkali yang lain lebih reaktif lagi. Kereaktifan litium yang rendah dibandingkan logam alkali lain adalah karena jarak elektron valensi yang dekat dengan inti.
Logam litium cukup lunak untuk dipotong dengan pisau. Ketika dipotong, ia memiliki warna putih keperakan yang dengan cepat berubah menjadi abu-abu karena oksidasi. Sembari merupakan salah satu logam dengan titik lebur terendah di antara semua unsur logam (180 °C), ia memiliki titik lebur dan didih yang paling tinggi dari golongan logam alkali .
Litium adalah logam yang paling ringan di tabel periodik, begitu ringannya sehingga ia dapat mengambang dalam air atau bahkan minyak, di samping natrium dan kalium yang juga dapat mengambang di dalam air atau minyak. Ia mempunyai massa jenis yang sangat rendah, kira-kira 0.534 g/cm3, ia mengambang di air, tapi juga bereaksi dengannya.
Hampir semua alat elektronik yang menggunakan tenaga listrik dari baterai menggunakan lithium-ion baterai karena kelebihan yang dimilikinya. Kelebihannya yang memiliki daya dan energi yang besar dibandingkan Ni-Cd dan Zinc-Mn baterai menjadikan baterai ini banyak diaplikasikan pada hampir semua jenis alat elektronik yang membutuhkan energi listrik. Sifatnya yang rechargeable juga merupakan salah satu kelebihan yang dapat digunakan untuk penyimpan energi listrik untuk pembangkit listrik tenaga angin dan solar cell.
Lithium-ion baterai pertama kali ditemukan oleh M.S. Whittingham pada tahun 1970 yang menggunakan titanium(II)sulfide sebagai katoda dan lithium metal sebagai anoda. Dengan penelitian yang intensif selama lebih dari 20 tahun, akhirnya pada tahun 1991 Sony memproduksi secara komersial lithium-ion baterai pertama kalinya. Sejak produksi komersial tahun 1991, produksi Lithium-ion baterai mengalami kenaikan yang sangat pesat karena telah membuat revolusi didunia elektronik. Kenaikan produksi lithium-ion baterai pada tahun 2007 mencapai 22.4% di Jepang. Saat ini negara Jepang merupakan produsen baterai terbesar yang dimiliki oleh Sony, Panasonic, dan Toshiba. Lithium-ion baterai juga merupakan pemimpin produk beterai yang menguasai 46% atau sekitar 4 milliar US dollar pangsa pasar pada tahun 2007.
Sejak diproduksi tahun 1991, lithium-ion baterai tidak mengalami perubahan signifikan pada sifat kerja baterai ini. Ada 3 elemen yang berperan dalam proses discharge dan recharge yaitu: elektroda positif yang mengandung LiCoO2, elektroda negatif yang terbuat dari karbon grafit (C6), dan separator yang terbuat dari lapisan tipis plastik yang dapat dilalui oleh ion-ion. Pada proses discharge atau saat kita memakai baterai, Li+ ion bergerak dari negatif ke positif melalui separator, sehingga elektron bergerak dengan arah yang sama. Aliran elektron inilah yang menghasilkan energi listrik.

Li1-xCoO2 + xLi+ + xe_ LiCoO2
LiC6 xLi+ + xe_ + 6C
skema-lithium-ion
Sifat logam lithium yang sangat reaktif membuat aliran ion lithium ini bereaksi spontan karena sifat logam lithium yang sangat oksidatif.
Kelebihan sifat logam lithium yang memberikan energi yang besar pada baterai disebabkan oleh daya oksidatif yang tinggi dan massa atom relatif yang kecil sehingga dengan berat yang lebih ringan, baterai ini dapat menghasilkan energi yang besar. Sebagai perbandingan, baterai Ni/Cd hanya memiliki energi sekitar 50 Watt.hour (Wh) dengan daya maksimum 1.2V sedangkan lithium-ion baterai memiliki sekitar 150 Wh dengan daya 3.7V untuk tiap 1 Kg-nya. Bahkan dari segi volume, tiap 1 dm3 lithium-ion baterai memiliki 500 Wh energi sedangkan Ni/Cd hanya sekitar 150 Wh. Dengan kelebihan ini, alat elektronik menjadi semakin ringan dan kecil.
Namun, sifat reaktif lithium ini juga merupakan kendala dari pembuatan lithium-ion baterai. Kendala utama yang mempersulit bahkan merugikan produsen baterai dan konsumen adalah faktor keamanan. Dalam pembuatan lithium-ion baterai, tahap akhir sebelum dipasarkan adalah awal pengisian baterai sekitar 40% dari kapasitas. Tahap awal charging baterai merupakan tahap yang sangat rentan kebakaran. Salah satu peristiwa yang terjadi adalah di Jepang pada tahun 2007 dimana pabrik baterai Panasonic terbakar saat tahap pengisian baterai. Pada tahun 2006 dan 2008, Sony menarik lebih dari 10 juta baterai untuk PC-nya karena adanya kendala keamanan. Di tahap konsumen juga kadang terjadi insiden akibat lithium-ion baterai. Pada Juni 2006 di Ohsaka, salah satu notebook peserta konferensi tiba-tiba terbakar yang mengakibatkan kebakaran. Hal ini ternyata disebabkan oleh kontaminasi bubuk logam pada baterai.
Dari penelitian yang telah banyak dilakukan oleh produsen baterai, penyebab terjadinya api pada baterai ion lithium adalah kontak lithium dengan logam lain, overcharge, dan pemanasan. Sedikit saja lithium ini kontak dengan serbuk logam akan menyebabkan api, sehingga jangan pernah menusuk baterai dengan paku atau benda lain. Pemakaian charger yang tidak sesuai dimana mengisi baterai dengan tegangan diatas yang seharusnya dalam jangka waktu lama dapat menyebakan kebakaran. Dan pemanasan diatas 60 derajat juga dapat membahayakan pengguna. Namun, saat ini baterai telah dilengkapi dengan termometer dan polimer separator yang dapat mencegah bahaya oleh temperatur tinggi.
Salah satu kendala yang lain dari lithium-ion baterai ini selain keamanan adalah sumber lithium itu sendiri. Saat ini lithium terbanyak dimiliki oleh negara Chili yang menyimpan cadangan lithium sekitar 3 juta ton atau sekitar 73.2% cadangan dunia. Sedangkan di negara-negara lain adalah sisanya atau sekitar 26.8% yang setengahnya dimiliki oleh China. Sehingga, negara-negara produsen lithium-ion baterai sangat tergantung dari kondisi politik negara Chili.
Dengan kelebihan dan kekurangan yang dimiliki oleh lithium-ion baterai, sampai saat ini baterai ini tetap menjanjikan untuk energi listrik yang bebas polusi. Dengan kombinasi sumber energi listrik dari tenaga matahari dan angin, masa depan lithium-ion baterai yang akan digunakan tiap rumah dan kendaraan sebagai penyimpan energi listrik sangat berperan untuk mengurangi penggunaan listrik yang bersumber dari bahan fosil.
Memperlihatkan perbandingan 3 jenis baterai yang menjadi perhatian saat ini. Yaitu, fuel cells, baterai nikel-metal hydride dan baterai litium-ion. Terlihat pada table, ketiga jenis baterai ini sama-sama memanfaatkan reaksi redoks (reduksi dan oksidasi) pada kedua elektroda untuk menghasilkan listrik.

Fuel cells memanfaatkan reaksi antara hydrogen dan oksigen untuk menghasilkan listrik. Voltase yang dihasilkan, secara teoritis 1.23 V, namun pada kenyataannya hanya menghasilkan dibawah 1.0 V. Sedangkan baterai nikel-metal hydride, menggunakan material penyimpan hydrogen sebagai anoda, dan nikel hidroksida sebagai katoda. Baterai ini mampu menghasilkan 1.32 V.
Tabel 1. Reaksi utama yang terjadi pada beberapa baterai (Chemistry Today 2009, 463, pg 20)
a) Fuel cells



Katoda
H2O
2H+ +1/2O2 + 2e-
Anoda
2H+ + 2e-
H2
Reaksi keseluruhan
H2O
H2 +1/2O2
Elektroda : C/Pt , voltase : (teori 1.23 V, kenyataannya ~1.0 V)
b) Baterai Nickel-Metal hydride

Katoda
NiII(OH)2 + OH-
NiIIIOOH + H2O + e-
Anoda
M + H2O + e-
MH + OH-
Reaksi keseluruhan
NiII(OH)2 + M
NiIIIOOH + MH
Larutan elektrolit : KOH, voltase : 1.32V

c) Baterai Litium-ion


Katoda
LiCOIIIO2
CoIVO2 + Li+ + e-
Anoda
Li+ +e-
Li
Reaksi keseluruhan
LiCOIIIO2
Li + CoO2
Larutan elektrolit : LiPF6 (larutan karbonat), voltase : 3.70V
Diantara ketiga jenis baterai ini, baterai litium-ion lah yang menghasilkan voltase tertinggi, 2 kali lipat dari yang dihasilkan baterai nickel-metal hydride. Baterai litium menggunakan komposit berstruktur layer, Litium Cobalt Oxide (LiCoO2), sebagai katoda, dan material karbon (dimana litium disisipkan diantara lapisan karbon) sebagai anoda.
Susunan struktur dari baterai litium-ion bisa dilihat di gambar 1. Baterai litium ion sendiri terdiri atas anoda, separator, elektrolit, dan katoda. Pada katoda dan anoda umumnya terdiri atas 2 bagian, yaitu bagian material aktif (tempat masuk-keluarnya ion litium) dan bagian pengumpul elektron (collector current).
Proses penghasilan listrik pada baterai litium-ion sebagai berikut: Jika anoda dan katoda dihubungkan, maka elektron mengalir dari anoda menuju katoda, bersamaan dengan itu listrik pun mengalir. Pada bagian dalam baterai, terjadi proses pelepasan ion litium pada anoda, untuk kemudian ion tersebut berpindah menuju katoda melalui elektrolit. Dan di katoda, bilangan oksidasi kobalt berubah dari 4 menjadi 3, karena masuknya elektron dan ion litium dari anoda. Sedangkan proses recharging/pengisian ulang, berkebalikan dengan proses ini.
Dari berbagai banyak jenis logam, kenapa litium yang sangat menjanjikan untuk anoda? Litium memiliki nilai potensial standar paling negatif (-3.0 V), paling ringan (berat atom:6.94 g), sehingga bila dipakai untuk anoda dapat menghasilkan kapasitas energi yang tinggi.
struktur baterai
Gambar 1. Struktur Baterai Litium-ion (Chemistry Today 2009, 463, pg 21, dengan perubahan)
Berikut ini cara menghitung nilai teori dari kepadatan energi yang dihasilkan oleh baterai litium ion. Jika menggunakan logam litium pada anoda, maka dari 1 kg logam litium dapat menghasil kapasitas energi per 1 kg massa sebesar (Coulumb/second = Ampere) :
kapasitas-energi-baterai-lithium-ion
Bila dikalikan dengan potensial standar litium (3 V), menjadi 11583 W h/kg (W=Watt, h=hours). Sedangkan bila menggunakan senyawa karbon sebagai anoda, dan dianggap satu unit grafit ( 6 atom karbon) mampu menampung 1 atom litium, maka setiap 1 kg anoda secara teori memiliki kepadatan energi 339 A h/kg.
Sama halnya dengan anoda, kapasitas energi pada katoda bisa dihitung dengan cara yang sama. Untuk LiCoO2, secara teori memiliki kepadatan energy 137 Ah/kg. Dengan mengetahui berat molekul dari material elektroda (disebut juga material aktif) dan setiap molekulnya berapa banyak elektron yang keluar masuk, nilai teori dari kepadatan energi dapat dihitung.



0 komentar:

Posting Komentar